Order-Invariant MSO is Stronger than Counting MSO in the Finite

نویسندگان

  • Tobias Ganzow
  • Sasha Rubin
چکیده

We compare the expressiveness of two extensions of monadic second-order logic (MSO) over the class of finite structures. The first, counting monadic second-order logic (CMSO), extends MSO with first-order modulo-counting quantifiers, allowing the expression of queries like “the number of elements in the structure is even”. The second extension allows the use of an additional binary predicate, not contained in the signature of the queried structure, that must be interpreted as an arbitrary linear order on its universe, obtaining order-invariant MSO. While it is straightforward that every CMSO formula can be translated into an equivalent order-invariant MSO formula, the converse had not yet been settled. Courcelle showed that for restricted classes of structures both order-invariant MSO and CMSO are equally expressive, but conjectured that, in general, order-invariant MSO is stronger than CMSO. We affirm this conjecture by presenting a class of structures that is order-invariantly definable in MSO but not definable in CMSO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expressiveness of Monadic Second-Order Logics on Infinite Trees of Arbitrary Branching Degree

In this thesis we study the expressive power of variants of monadic second-order logic (MSO) on infinite trees by means of automata. In particular we are interested in weak MSO and well-founded MSO, where the second-order quantifiers range respectively over finite sets and over subsets of well-founded trees. On finitely branching trees, weak and well-founded MSO have the same expressive power a...

متن کامل

Order-Invariant Types and Their Applications

Our goal is to show that the standard model-theoretic concept of types can be applied in the study of order-invariant properties, i.e., properties definable in a logic in the presence of an auxiliary order relation, but not actually dependent on that order relation. This is somewhat surprising since order-invariant properties are more of a combinatorial rather than a logical object. We provide ...

متن کامل

Expressivity and Succinctness of Order-Invariant Logics on Depth-Bounded Structures

We study the expressive power and succinctness of orderinvariant sentences of first-order (FO) and monadic second-order (MSO) logic on graphs of bounded tree-depth. Order-invariance is undecidable in general and, therefore, in finite model theory, one strives for logics with a decidable syntax that have the same expressive power as orderinvariant sentences. We show that on graphs of bounded tre...

متن کامل

On the Expressive Power of Monadic Least Fixed Point Logic

Monadic least fixed point logic MLFP is a natural logic whose expressiveness lies between that of first-order logic FO and monadic second-order logic MSO. In this paper we take a closer look at the expressive power of MLFP. Our results are (1) MLFP can describe graph properties beyond any fixed level of the monadic secondorder quantifier alternation hierarchy. (2) On strings with built-in addit...

متن کامل

Existential MSO over two successors is strictly weaker than over linear orders

As is well-known a language of finite words, considered as labeled linear orders, is definable in monadic second-order logic (MSO) iff it is definable in the existential fragment of MSO, that is the quantifier alternation hierarchy collapses. Even more, it does not make a difference if we consider existential MSO over a linear order or a successor relation only. In this note we show that somewh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008